
Graph Federated Learning with Center Moment Constraints for
Node Classification

Bisheng Tang
School of Cyber Security, University
of Chinese Academy of Sciences;

Institute of Information Engineering,
Chinese Academy of Sciences; Key
Laboratory of Cyberspace Security

Defense
Beijing, China

tangbisheng@iie.ac.cn

Xiaojun Chen∗
School of Cyber Security, University
of Chinese Academy of Sciences;

Institute of Information Engineering,
Chinese Academy of Sciences; Key
Laboratory of Cyberspace Security

Defense
Beijing, China

chenxiaojun@iie.ac.cn

Shaopu Wang
School of Cyber Security, University
of Chinese Academy of Sciences;

Institute of Information Engineering,
Chinese Academy of Sciences; Key
Laboratory of Cyberspace Security

Defense
Beijing, China

wangshaopu@iie.ac.cn

Yuexin Xuan
School of Cyber Security, University
of Chinese Academy of Sciences;

Institute of Information Engineering,
Chinese Academy of Sciences; Key
Laboratory of Cyberspace Security

Defense
Beijing, China

xuanyuexin@iie.ac.cn

Zhendong Zhao
School of Cyber Security, University
of Chinese Academy of Sciences;

Institute of Information Engineering,
Chinese Academy of Sciences; Key
Laboratory of Cyberspace Security

Defense
Beijing, China

zhaozhendong@iie.ac.cn

ABSTRACT
Centralized learning graph-structured data representation com-
monly exists in various institutions, while it is challenging to learn
other institutions’ graph-structured data representations without
data leakage. Federated learning (FL) is proposed to federally learn a
global model while keeping data privacy and security. However, FL
is notorious for the non-i.i.d data. The existing works aim to form
an undivided graph by linking all party subgraphs while neglecting
the local non-i.i.d feature in the training phase. To this end, we
propose a novel graph FL framework called FedOMD to leverage
global independent and identically distributed (i.i.d) hidden feature
representation to guide the local graph model training. Specifically,
We first model each local feature as a Gaussian distribution to de-
crease the representation discrepancy in different parties and then
calculate a global Gaussian distribution in the server. Finally, we
use central moment discrepancy to minimize the distance between
the party local and the server global distribution. With such dis-
tribution constraints, all parties can train the graph model in a
unified feature space. Our extensive experiments on five datasets
have manifested the competitive effectiveness of FedOMD over the
seven mentioned FL models. The relevant ablation and sensitivity
analysis also verify the effectiveness of FedOMD.

∗Corresponding author

This work is licensed under a Creative Commons Attribution International
4.0 License.

ICPP Workshops ’24, August 12–15, 2024, Gotland, Sweden
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1802-1/24/08
https://doi.org/10.1145/3677333.3678159

KEYWORDS
Graph, Federated Learning, Node, Non-i.i.d, Orthogonality, Center
Moment

ACM Reference Format:
Bisheng Tang, Xiaojun Chen, Shaopu Wang, Yuexin Xuan, and Zhendong
Zhao. 2024. Graph Federated Learning with Center Moment Constraints
for Node Classification. In The 53rd International Conference on Parallel
Processing Workshops (ICPP Workshops ’24), August 12–15, 2024, Gotland,
Sweden.ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3677333.
3678159

1 INTRODUCTION
Graph-structured data is widely present in various domains such
as medical institutions, banking, finance, and social networks and
possesses substantial commercial value. Graph neural networks
(GNNs) effectively deal with these graph-structured data relying on
spectral graph theory and have demonstrated impressive success
in recent years. However, several practical challenges hinder GNNs
from learning a general and robust embedding representation. For
instance, individuals and businesses are unlikely to provide their
data to others due to security and privacy concerns. These will
lead to each GNN learning a distinct embedding representation in
different parties, thereby hindering effective classification. Instead,
suppose the parties provide their private data to collaboratively
learn a global model, a wide range of beneficial applications, such as
epidemic disease prediction and bank money laundering detection,
can be explored.

To mitigate the challenges posed by data security and privacy
concerns, FL [20] has been proposed as a viable solution to train
graph models without exposing private data. In this approach,
parties upload their model parameters with encryption, and the

86

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3677333.3678159
https://doi.org/10.1145/3677333.3678159
https://doi.org/10.1145/3677333.3678159
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3677333.3678159&domain=pdf&date_stamp=2024-08-12

ICPP Workshops ’24, August 12–15, 2024, Gotland, Sweden B Tang, X Chen, S Wang, Y Xuan, and Z Zhao

Feature
Non-i.i.d

����� � ����� � ����� �

Server

Figure 1: The feature space in each participant is not identi-
cally distributed.

server then aggregates the model parameters, further distributing
them to participants. Such a widely applied algorithm in this par-
adigm is FedAVG [24]. Despite its great success, it is insufficient
to aggregate only the model parameters when utilizing FL to learn
graph-structured data. As figure 1 manifested, different local ar-
chitectures with non-i.i.d data (i.e., heterogeneous data) [33] affect
learning well-generalized global or personal models to varying
degrees. Recently, the existing work [38] proposes the generation
of cross-subgraph edges to build links between different parties,
thereby enabling the federation of all subgraphs to learn a global
i.i.d representation. [26] work extends this approach by incorpo-
rating SN-GAN to learn cross-subgraph edges, constraining the
feature generation of various parties with the same distribution.

Despite their effectiveness in graph federated learning (GFL), the
existing GFL suffers from, at least partially, the following problems.
Firstly, the nodes and edges generated by the GFL approach may
be imprecise or mismatched, as they may not exist in real-world
scenarios or, if they do, may exhibit significant discrepancies. As a
result, generating new nodes and edges is not always an effective
way to build connections between parties. Secondly, another issue
with GFL is that it does not consider the non-i.i.d feature distri-
bution across various parties, which accompanies not effectively
connecting each party. Building virtual links does not necessarily
result in all features across parties becoming i.i.d data. Moreover,
generated nodes’ features derived from different distributions may
cause a higher feature non-i.i.d problem, resulting in unstable per-
formance. The non-i.i.d phenomenon widely exists. For instance,
in the background of epidemic prediction, coronavirus presents
discrepancies in symptoms due to various variance branches and
kinds of environment. In some areas, the symptoms of coronavirus
are similar to influenza virus. While in other areas, there may exist
highly pathogenic and different severe symptoms. In other words,
the features of coronavirus appear the non-i.i.d phenomenon in
different regions, which is not beneficial to detect the coronavirus.

To mitigate the impact of the non-i.i.d feature generated by GFL,
we propose a novel GFL model called FedOMD. FedOMD lever-
ages global i.i.d hidden feature representation to guide local GNN
training. The model consists of four main steps. First, FedOMD
builds Gaussian distributions for all the parties’ hidden features to
reduce the distribution discrepancy of feature representation. Sec-
ond, it forms a global feature distribution through the information

exchange by the FL paradigm. Third, FedOMD collaboratively cal-
culates the distance between the local non-i.i.d hidden feature and
server i.i.d. hidden feature using the distribution metrics, central
moment discrepancy (CMD) [36]. Finally, FedOMD simultaneously
optimizes local model loss and CMD loss. By incorporating these
steps, FedOMD addresses the issues mentioned earlier and provides
a practical approach for learning graph-structured data in a fed-
erated setting. Our FedOMD model is conducive to learning all
the non-i.i.d features into i.i.d representation, which promotes the
detection of coronavirus in all regions.

Our contributions can be summarized in three main parts:
(i) We deeply analyze the deficiencies of generating the cross-

subgraph edges aiming at forming global i.i.d feature distribution
when confronted with local non-i.i.d feature distribution. Further-
more, we directly form the i.i.d hidden feature, thus having achieved
better results.

(ii) we propose a new GFL model, FedOMD, to address the non-
i.i.d feature training problem, a significant issue in GFL. Besides, our
model can implicitly calculate the IID distribution by only 2-round
interaction, which avoids expensive communication costs.

(iii) we conduct extensive experiments on five graph datasets,
demonstrating the competitive advantages of FedOMD over com-
monly used GFL models. Furthermore, the relevant ablation analy-
ses also comprehensively verify the effectiveness of FedOMD.

2 RELATEDWORKS
Graph Neural Networks. GNNs have demonstrated impressive

classification capabilities in downstream tasks, e.g., node classifi-
cation, edge prediction, and graph classification. The messaging
passing mechanism has dominated GNN designations, including
GCN [17], GAT [28], GraphSage [12], APPNP [18], GCNII [7], and
Graphormer [37] in recent years. Meanwhile, to adapt various graph
types, such as heterophily graphs, models like H2GCN [40] and
BM-GCN [14] have been proposed. Other models like HAN [30]
and HGNN [8] aim to handle heterogeneous graphs and hyper-
graphs, respectively. GNNs have also demonstrated remarkable
performance in self-supervised tasks, such as NASA [3]. Recently,
graph contrastive learning (GCL), as an augmentation technique
in graph learning, has promoted the model performance, such as
GraphCL [35]. Graph federated learning generally considers the
low complexity GNN as the local basic model, such as GCN [17] and
GraphSage [12]. Our work is most relevant to orthogonal GCN [11].
We leverage its orthogonalization to calculate Gaussian distribution
in our proposed method.

Federated Learning. FL has addressed the problem of data silos,
thus benefiting commercial applications, such as healthcare, edge
computing, and recommendation systems. The most famous FL
model is FedAVG [24], which averagely aggregates the isolated
local model. To further explore the data heterogeneity, several
works have been proposed, e.g., FedProx [21], SCAFFLOD [16],
and FedBaBU [25]. The FL can be divided into Horizontal and
Vertical FL according to the feature splitting. Our work is relevant
to Horizontal FL, whose datasets differ in samples yet share the
same feature space. The Vertical FL, where two data sets differ in
feature space but have a common sample space, is very suited to
cross-domain product recommendations.

87

Graph Federated Learning with Center Moment Constraints for Node Classification ICPP Workshops ’24, August 12–15, 2024, Gotland, Sweden

Graph Federated Learning. GFL [9, 22], federally coping with
graph-structured data, has gradually attracted researchers’ atten-
tion. GFL can be classified into two categories. One is the horizontal
graph FL, which focuses on graph level FL (e.g., FedGraphNN [13]),
subgraph level FL (e.g., FedGNN [31], GraphFL [29], ASFGNN [39],
FedSage [38], FedNI [26], FedCog [19]) and node level FL (e.g., [6]).
Another is vertical graph FL, which researches the node feature
vertically being separated to various parties, such as VFGNN [5].
Apart from the model discrepancy, there are also some applications,
e.g., time series prediction [6] and health record representation [23].
GFL utilizes the graph data in different parties to learn a global
graph representation or personalize their local task with the data
augmentation views. Moreover, various parties can build connec-
tions with each other under the FL process, which means every
party can be regarded as a node to participate in the message pass-
ing. Such learning methods generally can be chosen as auxiliary
enhancement tasks, such as work [6]. The existing works [27, 33]
mainly address the non-i.i.d problem in graph classification, and
our work focuses on subgraph level FL, especially in node feature
non-i.i.d scenarios.

3 PRELIMINARIES
The Training Process of Federated Learning. The training

process of FL can be concluded with the following three phases.
Phase 1 (Hyper-parameter Initialization): The server initials its

hyper-parameters according to the relevant data and task require-
ments and subsequently distributes global model𝑊0 to each partic-
ipant.

Phase 2 (Local Model Training): Each participant receives the
global model and updates its local model. Participants then con-
tinue to train the updated model with its local data D𝑖 and nego-
tiated epoch. After finishing the local training (minimizing loss
L(D𝑖 ,𝑊𝑖)), participant upload the trained model𝑊 ∗

𝑖
to server.

𝑊 ∗𝑖 = argminL(D𝑖 ,𝑊𝑖) . (1)

Phase 3 (Global Model Update): After the server has received all
uploaded models, it begins to aggregate the uploaded models. The
global model loss function is minimized as follows:

L(𝑊0) =
1
𝑁

𝑁∑︁
𝑖=1
L(D𝑖 ,𝑊𝑖). (2)

�1

�2

��

... ��

Com
binate m

odel w
eight

Hyper-parameter
Initialization

Server

Aggeragation

Model
Update

1
�

�=1

�

ℒ(��;��)

Figure 2: FL training process.

4 OUR PROPOSED METHOD: FEDOMD
This section commences by introducing the notations on GFL. It
proceeds to provide an elaborate elucidation of the local orthogonal
graph model and CMD. Finally, we present a novel orthogonal GFL
paradigm dubbed FedOMD.

4.1 Notations
Each client, denoted by C𝑖 , possesses a graph 𝐺𝑖 = (𝑋𝑖 ,𝑉𝑖 , 𝐸𝑖),
where𝑋𝑖 denotes the feature matrix, and𝑉𝑖 and 𝐸𝑖 refer to the node
and edge sets, respectively. 𝐴𝑖 represents the adjacency matrix and
satisfies (𝐴𝑖) 𝑗𝑘 = 1 iff edge 𝑒 𝑗𝑘 ∈ 𝐸𝑖 . The feature vector of the m-th
node 𝑉𝑖 (𝑚) ∈ 𝑉𝑖 is represented as 𝑋𝑖 (𝑚) and labeled with 𝑌𝑖 (𝑚) ∈
𝑌𝑖 . The objective of a graph classifier is to utilize the information
in 𝐴𝑖 , 𝑋𝑖 , and 𝑌𝑖 to learn a lower-dimensional representation 𝑍 𝑙 in
the 𝑙-th layer. One way to obtain 𝑍 𝑙 is by applying the activation
function 𝑅𝑒𝐿𝑈 to𝐴𝑍 𝑙−1𝑊 𝑙 , where 𝐴 = 𝐷−1/2 (𝐴 + 𝐼)𝐷−1/2 subject
to 𝐷𝑖𝑖 =

∑
𝑗 (𝐴 + 𝐼)𝑖 𝑗 , and 𝑍 0 = 𝑋𝑖 . Here, 𝐷 is a diagonal matrix,

and 𝐼 is the identity matrix. In the GFL scenario, each of the 𝑀

clients represents an independent entity, such as a hospital. These
clients collaborate to learn a global graph model while maintaining
the privacy of their raw data, obtaining a more general feature
embedding representation.

4.2 Motivations of Orthogonality
Directly utilizing a global model to constrain the local model in FL
has achieved significant success in addressing data heterogeneity,
such as FedProx [21] and SCAFFLOD [16]. Despite their effective-
ness, those models still encounter several unresolved challenges.
One is the distribution shifts, and another is global catastrophic
forgetting. Distribution shifts in GFL represent that a graph model
federally trained on several specific clients may not perform well
when deployed on a target domain with a distribution of inputs
that differs significantly from the learned global domain. Existing
work [4] in the transfer learning field leverages pairwise orthogo-
nality among all features to keep unique information not present
in others to relieve the distribution shifts. Global catastrophic for-
getting responds to the fact that when the global model is trained
on new tasks, its performance on old tasks decreases. The existing
FL method, Federated Orthogonal Training (FOT) [1], has relieved
the dilemma of global catastrophic forgetting through orthogonal
features and has achieved SOTA performance. In GFL, the problem
of global catastrophic forgetting can be regarded as: a global model
(new task) aggregated with various local models (old tasks) has a
decreased performance in some local heterogeneity clients. Those
two challenges exist in GFL, which have motivated us to leverage
the layer-wise orthogonality feature embedding method to address
the data heterogeneity in the GFL field.

4.3 Orthogonalized Node Representation
Learning

The weights of neural networks are generally initial with Gaussian
distribution, e.g., Xavier [10] and He initialization [15]. Therefore,
the layer-wise feature distribution also can be considered with a
Gaussian distribution due to the central limit theorem. The global

88

ICPP Workshops ’24, August 12–15, 2024, Gotland, Sweden B Tang, X Chen, S Wang, Y Xuan, and Z Zhao

feature distribution comprises all the local graph feature distribu-
tions, which can be formalized with a Gaussian mixture model
(GMM). Specifically, the GMM is defined as follows:

P(𝑦 |𝜃) =
𝑀∑︁
𝑖=1

𝛼𝑖P(𝑦 |𝜃𝑖). (3)

𝛼𝑖 is the weight of the i-th client and is constrained to 𝛼𝑖 ≥ 0. The
Gaussian distribution with parameters 𝜃𝑖 is represented by P(𝑦 |𝜃𝑖).
Moreover, we define the local hidden feature as a multivariate
Gaussian distribution, where the dimensionality depends on the
hidden features. In the client, it aims to learn P(𝑦 |𝜃𝑖) without
considering other participants. However, in the federated scenario,
the various clients collaborate to learn the global graph model by
incorporating the local P(𝑦 |𝜃𝑖) distributions, ultimately learning a
global representation P(𝑦 |𝜃) of hidden features.

Orthogonality in GFL. In the FL paradigm, the local graph
data may exhibit an inconsistent feature distribution due to non-
i.i.d samples. To mitigate this issue, all clients in terms of feature
aspects can construct a global distribution. Specifically, the feature
distribution in various clients C𝑖 , 𝑖 ∈ [𝑀] can be formalized using
a Gaussian distribution as follows:

P(𝑿 𝒊) = |2𝜋Σ𝑖 |−1/2 exp
(
−1
2
(𝑿 𝒊 − 𝝁 𝒊)𝑇 Σ−1𝑖 (𝑿 𝒊 − 𝝁 𝒊)

)
(4)

where 𝑿 𝒊 is the node features in the i-th client, and 𝝁 𝒊 and
Σ𝑖 are the mean vector and covariance matrix, respectively. As-
sume 𝝁 𝒊 = 0, the discrepancy between each client feature data
becomes the covariance matrix. Since Σ𝑖 is a constant in the i-client
in general, the Gaussian distribution can be simplified to P(𝑿 𝒊) ∝
exp

(
− 1
2𝑿 𝒊

𝑇𝑿 𝒊

)
. Without considering the activation function in

graph convolution networks as SGC [32] did, the 𝑙-layer represen-
tation can be linearly transformed to 𝑍 𝑙

𝑖
= (𝐴𝑖)𝑙𝑿 𝒊𝑊

0𝑊 1 · · ·𝑊 𝑙 .
Furthermore, if we set 𝐴𝑖𝑿 𝒊𝑊

𝑙 = 𝑄𝑖𝑿 𝒊 , then we can solve the
matrix equations (𝑊 𝑙𝑇 ⊗ 𝐴𝑖 − 𝐼 ⊗ 𝑄𝑖)𝑉𝑒𝑐 (𝑿 𝒊) = 0, 𝑙 ∈ [1, 𝐿 − 1]
with Kronecker product ⊗ and vectorization operation 𝑉𝑒𝑐 (·) :
𝑅𝑁×𝐹 ↦−→ 𝑅𝑁𝐹 , which equation futher approximately solved by
Newton iteration as [11] did. Note that Newton’s iteration approxi-
mate method will not largely increase computation costs over the
basic model. We set 𝑡 = 𝑄𝑖𝑿 𝒊 . Then, we can calculate 𝑿 𝒊 = 𝑄−

𝑖
𝑡

and substitute it into P(𝑿 𝒊).

P(𝒕) ∝ exp
(
−1
2

(
𝑄−1𝑖 𝒕

)𝑇 (
𝑄−1𝑖 𝒕

))
= exp

(
−1
2
𝒕𝑇

(
𝑄𝑖𝑄

𝑇
𝑖

)−1
𝒕

)
.

(5)

After conducting transformations in equation 5, the covariance
matrix Σ𝑖 can be expressed as Σ𝑖 = 𝑄𝑖𝑄

𝑇
𝑖
, where 𝑄𝑖 is a factor-

ization of the covariance matrix. Since the covariance matrix is
symmetric, it can be decomposed into its eigenvalues and eigen-
vectors as Σ𝑖 = 𝑈Λ𝑈𝑇 , which implies that 𝑄𝑖 = 𝑈Λ1/2. Following
spectral bounding normalization by setting𝑄𝑖 =

𝑄𝑖

∥𝑄𝑖 ∥𝐹 , the feature
vector 𝑋𝑖 can be orthogonally projected by 𝑈 via graph convolu-
tion. Note that our mathematical derivations are limited to one
local client and assume that all the clients are independent and

Table 1: Model structure.

order Layer→Layer Model Dimension
1 0→ 1 GCNConv 𝑅𝑑𝑖 → 𝑅𝑑ℎ

2 1→ 2 OrthoConv 𝑅𝑑ℎ → 𝑅𝑑ℎ

· · · · · · · · · · · ·
𝑙 − 1 n-2→ n-1 OrthoConv 𝑅𝑑ℎ → 𝑅𝑑ℎ

𝑙 n-1→ n GCNConv 𝑅𝑑ℎ → 𝑅𝑑𝑜

have no information exchange. In FL, we cannot always assume
the covariance matrix Σ𝑖 equal to the Σ matrix with other clients,
as each client owns a different feature distribution 𝑁𝑖 ∼ (𝝁 𝒊, Σ𝑖).
To address this issue and integrate all feature distributions into a
unified Gaussian distribution 𝑁 ∼ (𝝁, Σ) in FL scenarios without
disclosing private data, we employ CMD to implicitly calculate
server feature distribution (i.e., we only need to upload the mean
value and calculate CMD distance in figure 3) to constrain the lo-
cal non-i.i.d feature distribution. In the 𝑘-layer feature orthogonal
process illustrated in table 1, the reconstruction loss in client 𝑖 is
calculated as follows:

L𝑜𝑟𝑡ℎ𝑜𝑖 =
𝑙−1∑︁
𝑘=2

𝑊 𝑘
𝑖 𝑊

𝑘
𝑖

𝑇 − 𝐼

𝐹
. (6)

Orthogonal Networks. In the client, we define a multi-hidden
layer orthogonal network to learn a unified i.i.d hidden feature
distribution. We calculate the first layer as:

𝑍 1 = 𝜎 (𝑆𝑋𝑊 0), (7)

where𝜎 is𝑅𝑒𝐿𝑈 function, and𝑍 in the 𝑙−1 hidden layer is calculated
as:

𝑍 𝑙−1 = 𝜎 (𝑄𝑍 𝑙−2) . (8)

The final layer is calculated as:

𝑍 𝑙 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑆𝑍 𝑙−1𝑊 𝑙−1), (9)

where 𝑆 is the laplace normalised matrix 𝑆 = 𝐷−1/2 (𝐴 + 𝐼)𝐷−1/2
subject to 𝐷𝑖𝑖 =

∑
𝑗 (𝐴 + 𝐼)𝑖 𝑗 , and 𝑄 =

𝑄

∥𝑄 ∥𝐹 is the normalised
orthogonal projected matrix.

4.4 Center Moment Optimization
In the server part, we need clients to upload their consensual iid
sample representation. However, It is a significant challenge to
identify i.i.d feature samples in the FL scenario. To this end, we
propose to leverage the empirical global distribution for all features
from various clients.

Communication Optimization. However, calculating the em-
pirical global distribution needs all the features from different par-
ties. Uploading all feature vectors into the server in an FL scenario
can cause an enormous communication cost. To this end, we pro-
pose to upload statistical data instead. Specifically, as illustrated in
figure 3, we propose a design that involves uploading (E(𝑿 𝒊), 𝑛𝑖),
which is instrumental in reducing communication costs and facili-
tating the CMD distance calculation. We calculate the mean of i.i.d

89

Graph Federated Learning with Center Moment Constraints for Node Classification ICPP Workshops ’24, August 12–15, 2024, Gotland, Sweden

Aggregated at the server Calculated at the server

�� �� ��...

�

(ℳ�, ��)
ℳ [��

���]� [����]�

Server

client_1 client_2 ... client_m

calculate the global j-order central moment

Server
GCNCONV

��

��������

��

ORTHOCONV Readout

Local loss
ℒ�

��

� ����

��

Client_i ... Layer:1 to � − 1

Figure 3: The whole framework of FedOMD. Each client model is set as an orthogonal graph network, and the server is to
execute the FedAVG process and calculates the jth-order central moment.

features as follows:

M =

∑
𝑖∈[𝑀] 𝑛𝑖M𝑖∑
𝑖∈[𝑀] 𝑛𝑖

𝑠 .𝑡 . M𝑖 = E(𝒁𝑖). (10)

Central Moment Discrepancy. After obtaining the global mean
value of the hidden feature in sever, we calculate the jth-order cen-
tral moment through the two times distribute-upload global mean
value process, which depicts more concrete in algorithm 1. After
finishing calculating the jth-order central moment, we minimize
the distance of the jth-order central moment between the client
and server. The CMD involves calculating the jth-order central
moment for two types of distribution and can thus achieve distance
constraints in the FL scenario. A smaller CMD value indicates a
closer distribution and can be defined as follows:

𝑑CMD𝑖

(
𝑍 train
𝑖 , 𝑍IID

)
=

1
𝑏 − 𝑎

E (
𝑍 train
𝑖

)
− E

(
𝑍IID

)

2

+
∞∑︁
𝑗=2

1
|𝑏 − 𝑎 | 𝑗

[C𝑖] 𝑗 (𝑍 train
𝑖

)
− [S] 𝑗

(
𝑍IID

)

2
,

(11)

where the elements of 𝑍 are limited to [𝑎, 𝑏], and [C𝑖] 𝑗 , [S] 𝑗 de-
notes the jth-order central moment. The jth-order central moment
[S] 𝑗 in server is calculated as [S] 𝑗 = E((𝒁 − E(𝒁)) 𝑗) and in client
is calculated as [C𝑖] 𝑗 = E((𝒁𝒊 − E(𝒁𝒊)) 𝑗).

Motivations of CMD. We realize that node representations
through neighbor aggregations are truthful and valuable in the real
world, even if isolated from other parties. Though they produce
personalized data bias, these do not prevent them from communi-
cating with each other across space (e.g., through FL) and fusing
to a new global data distribution, which motivates us to design
IID-hidden representations in the server to guide federated train-
ing. An intuitive example is cultural exchange, which isolates and
occasionally communicates with each other.

4.5 Overall Optimization Goal
The total optimization loss comprises three components: (1) the
local graph model cross-entropy (CE) loss, (2) the local model or-
thogonalization loss, and (3) the CMD loss in the federated process.

These three parts can be combined with hyper-parameters as fol-
lows:

L𝑖 = 𝐶𝐸 (𝑍 𝑙
𝑖 , 𝑌𝑖) + 𝛼 × L𝑜𝑟𝑡ℎ𝑜𝑖 + 𝛽 × 𝑑𝐶𝑀𝐷𝑖

, (12)

where 𝛼 = 0.0005 and 𝛽 = 10 are set in our experimental settings.

4.6 Algorithm
As algorithm 1 manifested, FedOMD collaboratively computes IID
hidden samples representation between server and clients, which
aims to guide the local GNN model training. We detail these pro-
cesses in the following paragraph. In lines 3-7, parties first calculate
the local hidden feature mean and subsequently leverage it to cal-
culate the local jth-order central moment. All the participants are
required to upload the mean results to sever, shown in line 8. After
all the participants have uploaded their data, the server calculates
the mean of all parties’ data with line 25. After parties have re-
ceived the server calculation results, they begin to calculate a part
of the jth-order central moment (utilize the mean of all participants’
hidden features) in lines 12-13 and then upload to the server for
calculating the mean value of all participants’ jth-order central
moment in line 25. Through a 2-round interaction with mean value,
all the parties will implicitly obtain the IID’s hidden representa-
tion. Naturally, the parties calculate the CMD loss in lines 19-20
and leverage the FedAVG in lines 26-29 to update the local model
weight.

5 EXPERIMENTS
This section provides detailed experimental settings, including the
statistics of the dataset, the baselines and their respective achieve-
ments, and the achievement of our FedOMD. Subsequently, we
conduct a semi-supervised node classification task on five datasets
with various party settings. Lastly, we have conducted several ex-
tensive ablations of hyper-parameters. We aim to answer three
research questions as follows. RQ1: Can FedOMD achieve com-
petitive performance than FL and GFL models? RQ2: How do the
orthogonalization and CMD cooperate during FedOMD’s training?
RQ3: How do the hyper-parameters affect FedOMD’s training?

90

ICPP Workshops ’24, August 12–15, 2024, Gotland, Sweden B Tang, X Chen, S Wang, Y Xuan, and Z Zhao

Algorithm 1 The whole algorithm of FedOMD.
Input: i-th Local Adjacency Matrix 𝐴𝑖 , Feature Matrix 𝑋𝑖 ,

and label 𝑌𝑖 .
Parameter:𝑊𝑖 , where 𝑖 ∈ [𝑀].
Output: Trained client-side model weights𝑊𝑖 .
ClientExecute:
1: for client round 1, 2, · · · , 𝑒𝑝𝑜𝑐ℎ do
2: for each client 𝑖 ∈ [𝑀] in parallel do
3: 𝑍 𝑙

𝑖
= OrthoGCN(𝑋𝑖)

4: [M1
𝑖
, · · · ,M𝑙−1

𝑖
] = CalculateMean([𝑍 1

𝑖
, · · · , 𝑍 𝑙−1

𝑖
]) ⊲

Calculate local hidden feature mean.
5: for 𝑗 ∈ [2, 3, 4, 5] do
6: [C1

𝑖
, · · · , C𝑙−1

𝑖
] 𝑗 =

1
𝑛𝑖

∑𝑛𝑖
𝑚=1 ([𝑍

1
𝑖
(𝑚), · · · , 𝑍 𝑙−1

𝑖
(𝑚)] − [M1

𝑖
, · · · ,M𝑙−1

𝑖
]) 𝑗

⊲ Calculate local jth-order central moment.
7: end for
8: Send2Sever([M1

𝑖
, · · · ,M𝑙−1

𝑖
], 𝑛𝑖) ⊲ Upload to server.

9: for all clients have executed Send2Sever do
10: ReciveFromServer([M1, · · · ,M𝑙−1]) ⊲ Obtain

the global hidden feature mean.
11: end for
12: for 𝑗 ∈ [2, 3, 4, 5] do
13: [S1

𝑖
, · · · ,S𝑙−1

𝑖
] 𝑗 =

1
𝑛𝑖

∑𝑛𝑖
𝑚=1 ([𝑍

1
𝑖
(𝑚), · · · , 𝑍 𝑙−1

𝑖
(𝑚)] − [M1, · · · ,M𝑙−1]) 𝑗

⊲ Calculate jth-order central moment.
14: end for
15: Send2Sever([S1

𝑖
, · · · ,S𝑙−1

𝑖
] 𝑗 , 𝑛𝑖)

16: for all clients have executed Send2Sever do
17: ReciveFromServer([S1, · · · ,S𝑙−1] 𝑗) ⊲ Obtain the

global jth-order central moment.
18: end for
19: 𝑑𝐶𝑀𝐷𝑖

=
∑[𝑀]
𝑖=1

∑𝐿−1
𝑙=1 (

1
𝑏−𝑎 ∥M

𝑙
𝑖
− M𝑙 ∥2 +∑5

𝑗=2
1

(𝑏−𝑎) 𝑗 ∥ [C
𝑙
𝑖
] 𝑗 − [S𝑙] 𝑗 ∥2)

20: L𝑖 = 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 (𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑍 𝑙
𝑖
), 𝑌𝑖) + 𝛼 × L𝑜𝑟𝑡ℎ𝑜𝑖 +

𝛽 × 𝑑𝐶𝑀𝐷𝑖

21: 𝑊𝑖 ← ServerUpdate(𝑊𝑖 (∇𝑙𝑜𝑠𝑠𝑖)) ⊲ Use FedAVG to
aggregate weight.

22: end for
23: end for
24: ReturnW
ServerExecute(𝑍𝑖):
25: Return M𝑖 =

∑
𝑖∈ [𝑀] 𝑛𝑖E(𝒁𝑖)∑

𝑖∈ [𝑀] 𝑛𝑖
⊲ Send2Client and

ReciveFromClient.
ServerUpdate:
26: for 𝑖 ∈ [𝑀] do
27: 𝑊 =

∑[𝑀]
𝑖=0 𝜆𝑖 ·𝑊𝑖 ⊲ Use FedAVG to aggregate the weight

collected from clients.
28: end for
29: return ∇

5.1 Settings

Table 2: The datasets for the statistics graph in our experi-
ments are split into train, validation, and test sets at a ratio
of 1%, 20%, and 20% respectively.

Dataset #Nodes #Edges #Classes #Features
Cora 2,708 5,429 7 1,433

Citeseer 3,312 4,732 6 3,703
Computer 13,381 245,778 10 767
Photo 7,487 119,043 8 745

Coauthor-cs 18,333 182,121 15 6805

Datasets. We assess the efficacy of FL for node prediction on
five datasets: Cora, Citeseer, Amazon Electronics Computers (Com-
puter), Amazon Electronics Photo (Photo), and Coauthor Microsoft
Academic Computing Science (Coauthor-cs). The pertinent statis-
tics of the datasets are presented in table 2.

Baselines. We selected seven models as our baselines: FedMLP,
FedProx [21], SCAFFOLD [16], LocGCN, FedGCN, and FedSage+.
FedMLP is a 2-layer multi-layer perception model with a hidden
dimension of 64. FedProx calculates a proximal term to the local
subproblem based on FedMLP. SCAFFOLD uses control variates to
correct for the ‘client-drift’ in its local updates based on FedMLP.
LocGCN employs a two-layer GCN model to train the local graph
data and subsequently averages the accuracy across various parties.
FedGCN incorporates additional federally learned GCN parameters
based on LocGCN. FedSage+ and FedLIT are adapted from the work
of [38] and [34], respectively. We propose FedOMD based on the
Ortho-GCN model [11] to an FL scenario.

Implementation Details. We utilized the Louvain-cut algo-
rithm to partition a global graph into several local graphs. The
hyperparameter "resolution" was set to the default value in the
Cora and Citeseer and 20 in the Computer and Photo datasets. We
have set the communication interval to 1 and limited the number
of parties to 3, 5, 7, 9. The alpha and beta are set to 0.0005 and 10,
respectively. We have set the maximum epoch to 1000, the patience
to 200, and fixed weight decay to 1e-4. We calculate the average
accuracy five times. We conduct experiments on an Intel(R) Xeon(R)
Silver 4314 CPU @ 2.40GHz, A100 Nvidia GPU, and system Ubuntu
20.04.6 LTS.

Visualization. To evaluate the effectiveness of our method in a
non-i.i.d setting, we split the global graph into several subgraphs,
each assigned to different parties, as shown in the figure 4. The
subgraphs exhibit high non-i.i.d properties, as evidenced by the
distribution of labels. Additionally, the feature distribution varies
significantly across different parties, further highlighting the non-
i.i.d properties of the dataset.

5.2 Results on Node Classification
The results from table 4 demonstrate that our proposed FedOMD
model has achieved competitive accuracy in node classification
tasks. Compared with traditional FL, i.e., FedMLP, FedProx, and
SCAFFOLD, our FedOMD has presented significant performance

91

Graph Federated Learning with Center Moment Constraints for Node Classification ICPP Workshops ’24, August 12–15, 2024, Gotland, Sweden

Table 3: n, m, c, and f are the number of nodes, edges, classes, and feature dimensions, respectively. s is the number of selected
augmented nodes, and g is the number of generated neighbors. k corresponds to the number of times we aggregate features.
Besides, N is the number of participating clients in each training round. L is the number of model layers in their original paper.

Model Client Time Server Time Inference Time
FedMLP 𝑂 (𝑛𝑓 2) 𝑂 (𝑁) 𝑂 (𝑛𝑓 2)
FedProx 𝑂 (𝑛𝑓 2 + 𝑓 2) 𝑂 (𝑁) 𝑂 (𝑛𝑓 2)

SCAFFOLD 𝑂 (𝑛𝑓 2 + 𝑓 2) 𝑂 (𝑁 + 𝑁 𝑓 2 + 𝑓 2) 𝑂 (𝑛𝑓 2)
FedGCN 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2) 𝑂 (𝑁) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2)
FedLIT 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2) 𝑂 (𝑁 + 𝑁 𝑓 2 + 𝑓) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2)
FedSage+ 𝑂 (𝐿(𝑚 + 𝑠𝑔) 𝑓 + 𝐿(𝑛 + 𝑠𝑔) 𝑓 2) 𝑂 (𝑁) 𝑂 (𝐿(𝑚 + 𝑠𝑔) 𝑓 + 𝐿(𝑛 + 𝑠𝑔) 𝑓 2)
FedOMD 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2 + 𝑓 2 + 𝑛2 𝑓) 𝑂 (𝑁 + 𝑁 2 𝑓 2 + 𝑁 𝑓) 𝑂 (𝑘𝑚𝑓 + 𝑛𝑓 2)

Table 4: We contrast seven baselines in four graph datasets with our FedOMD. The party number is set in {3, 5, 7, 9}. The best
test results (accuracy ± std) are bold.

Acc(%) Cora Citeseer
Model M=3 M=5 M=7 M=9 M=3 M=5 M=7 M=9

FedMLP 33.37
(±3.32)

29.03
(±2.37)

28.12
(±2.90)

30.69
(±1.89)

31.29
(±2.59)

29.77
(±4.17)

28.69
(±3.91)

26.96
(±4.13)

SCAFFOLD 34.01
(±4.19)

31.88
(±0.98)

30.38
(±3.74)

32.89
(±1.34)

35.49
(±5.00)

32.08
(±4.15)

31.18
(±2.41)

30.53
(±3.17)

FedProx 32.84
(±6.20)

38.09
(±5.28)

33.54
(±2.43)

36.96
(±2.39)

35.96
(±6.33)

34.10
(±5.69)

32.23
(±3.64)

34.00
(±1.68)

LocGCN 42.73
(±4.52)

38.31
(±2.25)

34.05
(±4.16)

36.08
(±4.68)

39.87
(±3.44)

32.86
(±1.29)

33.56
(±3.74)

29.59
(±6.74)

FedGCN 47.12
(±7.07)

44.27
(±2.73)

38.45
(±3.76)

41.22
(±3.03)

42.98
(±2.58)

36.59
(±4.09)

36.89
(±3.06)

33.87
(±6.83)

FedLIT 33.33
(±1.91)

42.05
(±5.10)

34.67
(±1.03)

27.67
(±3.84)

36.24
(±2.01)

36.71
(±1.77)

33.26
(±1.03)

32.23
(±1.61)

FedSage+ 40.72
(±3.52)

39.73
(±3.58)

37.43
(±4.11)

38.74
(±2.49)

40.59
(±3.75)

37.78
(±3.83)

37.01
(±4.05)

35.40
(±1.65)

FedOMD 54.35
(±5.86)

50.10
(±7.49)

41.90
(±4.71)

38.19
(±5.25)

53.08
(±3.67)

39.38
(±1.85)

40.46
(±3.07)

35.67
(±3.62)

Acc(%) Computer Photo
Model M=3 M=5 M=7 M=9 M=3 M=5 M=7 M=9

FedMLP 41.22
(±3.42)

41.13
(±2.08)

41.05
(±1.79)

40.09
(±3.04)

35.92
(±9.09)

46.87
(±3.40)

39.77
(±7.58)

40.22
(±1.20)

SCAFFOLD 41.82
(±3.52)

40.45
(±2.47)

41.72
(±1.05)

42.01
(±1.54)

34.40
(±4.50)

39.41
(±5.37)

45.84
(±3.26)

43.17
(±1.86)

FedProx 41.29
(±3.66)

44.21
(±4.04)

41.61
(±4.28)

45.34
(±4.12)

40.14
(±7.48)

46.05
(±6.48)

48.84
(±3.71)

49.00
(±8.87)

LocGCN 55.33
(±5.77)

54.57
(±6.18)

54.98
(±3.67)

54.09
(±2.19)

65.93
(±4.20)

62.84
(±5.05)

62.53
(±4.00)

66.76
(±3.24)

FedGCN 42.42
(±2.29)

42.07
(±3.71)

39.57
(±1.22)

40.12
(±2.54)

57.82
(±5.47)

53.65
(±2.46)

51.69
(±3.66)

49.04
(±3.01)

FedLIT 49.69
(±4.12)

36.34
(±0.34)

53.07
(±4.53)

51.12
(±5.31)

73.44
(±2.67)

44.11
(±1.07)

39.28
(±6.89)

38.45
(±5.94)

FedSage+ 59.46
(±2.40)

42.68
(±7.26)

47.02
(±7.12)

47.66
(±6.74)

63.23
(±3.24)

59.28
(±3.06)

56.43
(±2.63)

58.09
(±6.50)

FedOMD 68.08
(±3.68)

71.40
(±2.59)

71.01
(±2.77)

68.71
(±1.96)

77.71
(±2.68)

75.98
(±2.09)

76.05
(±3.52)

78.30
(±2.36)

92

ICPP Workshops ’24, August 12–15, 2024, Gotland, Sweden B Tang, X Chen, S Wang, Y Xuan, and Z Zhao

0 1 2 3 4 5 6 7 8 9 10
Party ID

0
1
2
3
4
5
6
7
8

La
be

ls

Label Distribution

(a) Cora

0 1 2 3 4 5 6 7 8 9 10
Party ID

0
1
2
3
4
5
6
7
8
9

10
11

La
be

ls

Label Distribution

(b) Computer

0 1 2 3 4 5 6 7 8 9 10
Party ID

0

1

2

3

4

5

6

7

La
be

ls

Label Distribution

(c) Citeseer

0 1 2 3 4 5 6 7 8 9 10
Party ID

0
1
2
3
4
5
6
7
8
9

La
be

ls

Label Distribution

(d) Photo

Figure 4: The distribution of labels is non-i.i.d across differ-
ent parties. This figure illustrates the number of labels in
various parties using blue circles, with the area of the cir-
cles corresponding to the number of labels. A larger area
indicates more label counts. The non-i.i.d label distribution
approximately displays the non-i.i.d feature distribution in
our experimental graph datasets, in thatwe cut awhole graph
into several subgraphs while keeping the consistency of fea-
ture space.

promotion. Notably, when training with our label rate, the per-
formances of FedLIT and FedSage+ have comparatively decreased
over their oracle federated models. We attribute the reason to the
demand of FedLIT and FedSage+ for massive samples to cluster
latent link types and maintain sampling effectiveness, respectively.
However, when the node samples are not randomly and uniformly
acquired, the sample distribution can harm the learning of a global
model. Compared to other GFL models, FedSage+ may underper-
form or even perform worse than it (e.g., FedGCN). Our FedOMD
model aims to address the non-i.i.d effects in federated aggrega-
tion by imposing a global i.i.d sample constraint using the CMD
distance, which presents high effectiveness in node classification.
Notably, only a few statistical data of local features are required
to calculate the CMD distance, causing negligible communication
costs in algorithm 1, and we show the relevant calculation time in
table 3. We tested our model with various party numbers 3, 5, 7,
and 9 and have achieved almost the best performance. As table 5
shows, we also conduct experiments on more party numbers, i.e.,
20 and 50, and manifest the superior advantages of our model in 20
and 50 parties. All those mentioned analyses have fully answered
the RQ1.

Convergence Analysis. As figure 5 illustrates, our FedOMD
model has manifested stable performance along with the increasing
communication round, which verifies the convergence of FedOMD.
Besides, the baseline model’s performance also converges, which

Table 5: Themore numbers of parties are analyzed.We utilize
{20, 50} parties as our experiment settings.

Acc(%) Coauthor-cs
Models M=20 M=50

FedMLP 32.61
(±3.96)

32.65
(±4.62)

SCAFFOLD 40.45
(±5.79)

33.54
(±1.48)

FedProx 39.68
(±2.07)

36.81
(±1.48)

LocGCN 42.24
(±4.33)

37.93
(±3.40)

FedGCN 42.49
(±7.49)

39.49
(±2.75)

FedLIT 52.10
(±3.44)

34.58
(±1.46)

FedSage+ 64.80
(±0.11)

44.23
(±0.13)

FedOMD 70.35
(±0.85)

48.47
(±5.13)

0 200 400 600 800 1000
Communication Round

0.1

0.2

0.3

0.4

0.5

Av
er

ag
e

AC
C

FedProx
SCAFFLOD
FedGCN
FedSage+
FedLIT
FedOMD

Figure 5: The average test accuracy with 5 parties (Cora).

shows the model’s learning ability. Our model has also exhibited
the advantage of convergence speed than those federated models.

5.3 Ablation Analysis
Effects of Key Components Mechanism. To answer RQ2, we

conduct ablation experiments to various modules, i.e., orthogonal-
ization and CMD. As shown in table 6, the combination of feature
orthogonalization and CMD distance constraint has demonstrated
the best performance improvement. The CMD distance plays a
more critical role in enhancing the performance of FL than orthog-
onal modules by leveraging i.i.d samples to learn an i.i.d feature
representation across all parties. The orthogonal constraint has also
promoted the model performance, which manifests that orthogonal
constraint can reduce the effect of feature distribution shifts and
global catastrophic forgetting problems in GFL to some extent.

5.4 Sensitivity Analysis
Hyper-parameters in Loss Function. As shown in figure 6,

the hyperparameters 𝛼 and 𝛽 exhibit different effects in the Cora
and Computer datasets, suggesting that the performance of our
FedOMD model is somewhat sensitive to the choice of hyperparam-
eter values. This sensitivity arises from differences in the magnitude

93

Graph Federated Learning with Center Moment Constraints for Node Classification ICPP Workshops ’24, August 12–15, 2024, Gotland, Sweden

Table 6: The average test accuracy with different combina-
tions of augmentation strategies.

Ortho CMD Cora
M=3 M=5 M=7 M=9

✔ ✗
52.13
(±9.13)

46.26
(±9.96)

33.95
(±8.21)

36.14
(±0.70)

✗ ✔
54.28
(±5.61)

49.48
(±5.02)

41.12
(±4.48)

37.49
(±2.02)

✔ ✔
54.35
(±5.86)

50.10
(±7.49)

41.90
(±4.71)

38.19
(±5.25)

Ortho CMD CiteSeer
M=3 M=5 M=7 M=9

✔ ✗
51.58
(±2.65)

37.31
(±3.40)

35.85
(±3.45)

32.68
(±3.52)

✗ ✔
52.46
(±4.37)

39.03
(±2.05)

40.43
(±2.90)

35.03
(±2.03)

✔ ✔
53.08
(±3.67)

39.38
(±1.85)

40.46
(±3.07)

35.67
(±3.62)

of the effect produced by changes to 𝛼 and 𝛽 . To simplify the experi-
mental setup, we fixed 𝛼 at 0.0005 and 𝛽 at 10, achieving competitive
performance across both datasets.

0.00020.00040.00060.0008
0.0010

2.5
5.07.510.012.515.017.520.0

Ac
cu

ra
cy

0.46

0.48

0.50

0.52

0.54

(a) Cora

0.00020.00040.00060.0008
0.0010

2.5
5.07.510.012.515.017.520.0

Ac
cu

ra
cy

0.62
0.63
0.64
0.65
0.66
0.67
0.68
0.69
0.70

(b) Computer

Figure 6: The average test accuracy with different combina-
tions of hyper-parameters (𝛼 , 𝛽) to the FedOMD model with
three parties.

TheNumber of Orthogonal Layer. Table 7 has shown the effect
of the number of hidden layers on FedOMD. Toomany hidden layers
will cause the over-smoothing problem, thus leading to performing
worse in FL scenarios, while our FedOMD has successfully relieved
this over-smoothing tendency. As table 7 manifested, our model
with a 10-hidden layer still presents better performance than a
total 2-layer FedGCN model. The main reasons we include as two
aspects. One is to use orthogonalization to keep a distinguishable
vector, and another is to utilize CMD distance to relieve the non-i.i.d
phenomena.

Resolution. In figure 7, we also explore the impact of the Louvain-
cut algorithm [2] with the resolution parameter, which determines
the threshold for cutting the graph into various scale subgraphs.
A larger resolution value will produce multiple smaller subgraphs.
From the effect of the Louvain-cut algorithm on the accuracy, we
analyze that it is easier to obtain higher accuracy with a small pa-
rameter value since it has cut a global graph into several large con-
nected graphs from the observation of Cora and Citeseer datasets.
As our experiential cognition, if cutting a large graph into several

connected graphs to various participants, the local model also can
perform well based on the observation of the Computer and Photo
datasets.

Different hyper-parameters have significantly distinguished ef-
fects on FedOMD in the training process. Choosing proper hyper-
parameters can effectively promote the performance of FedOMD,
which can answer RQ3.

Cora Citeseer0

10

20

30

40

50

60

Ac
cu

ra
cy

 %

resolution = 1
resolution = 5
resolution = 10
resolution = 20

(a) Cora and Citeseer

Computer Photo0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

 %

resolution = 1
resolution = 5
resolution = 10
resolution = 20

(b) Computer and Photo

Figure 7: This table illustrates the impact of hyper-parameter
resolution for four datasets with three parties.

6 CONCLUSIONS
This paper proposes a novel framework for GFL, called FedOMD,
which addresses the challenge of non-i.i.d features across different
parties. FedOMD constructs a mixed multivariate Gaussian distri-
bution in the server by integrating all the parties’ local multivariate
Gaussian distributions. The CMD distance is minimized between
the server and the parties’ distributions to learn a global i.i.d fea-
ture representation. The extensive experiments on various graph
datasets have demonstrated the obvious advantages over other GFL
approaches, and the ablation and sensitivity analyses also show the
effectiveness of FedOMD.

ACKNOWLEDGMENTS
This work is supported by Beijing Municipal Science & Technology
Commission New generation of information and communication
technology innovation Research and demonstration application of
key technologies for privacy protection of massive data for large
model training and application(Z231100005923047).

REFERENCES
[1] Yavuz Faruk Bakman, Duygu Nur Yaldiz, Yahya H Ezzeldin, and Salman Aves-

timehr. 2023. Federated orthogonal training: Mitigating global catastrophic
forgetting in continual federated learning. arXiv preprint arXiv:2309.01289 (2023).

[2] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of statistical
mechanics: theory and experiment 2008, 10 (2008), P10008.

[3] Deyu Bo, BinBin Hu, Xiao Wang, Zhiqiang Zhang, Chuan Shi, and Jun Zhou.
2022. Regularizing Graph Neural Networks via Consistency-Diversity Graph
Augmentations. (2022).

[4] Annie S Chen, Yoonho Lee, Amrith Setlur, Sergey Levine, and Chelsea Finn. 2023.
Project and Probe: Sample-Efficient Adaptation by Interpolating Orthogonal
Features. In The Twelfth International Conference on Learning Representations.

[5] Chaochao Chen, Jun Zhou, Longfei Zheng, Huiwen Wu, Lingjuan Lyu, Jia Wu,
Bingzhe Wu, Ziqi Liu, Li Wang, and Xiaolin Zheng. 2020. Vertically federated
graph neural network for privacy-preserving node classification. arXiv preprint
arXiv:2005.11903 (2020).

[6] Fengwen Chen, Guodong Long, Zonghan Wu, Tianyi Zhou, and Jing Jiang. 2022.
Personalized federated learning with graph. arXiv preprint arXiv:2203.00829
(2022).

94

ICPP Workshops ’24, August 12–15, 2024, Gotland, Sweden B Tang, X Chen, S Wang, Y Xuan, and Z Zhao

Table 7: The various number of hidden layers is analyzed. We utilize two hidden layers as our experiment settings.

Models Layer Computer Photo
M=3 M=5 M=7 M=9 M=3 M=5 M=7 M=9

FedOMD

2-hidden 68.08
(±3.68)

70.40
(±2.59)

71.01
(±2.77)

68.71
(±1.96)

77.71
(±2.68)

75.98
(±2.09)

76.05
(±3.52)

78.30
(±2.36)

4-hidden 63.44
(±1.98)

66.14
(±3.82)

67.04
(±2.88)

68.34
(±3.71)

73.97
(±2.83)

71.27
(±3.79)

69.54
(±5.35)

73.82
(±2.48)

6-hidden 54.62
(±5.06)

58.19
(±3.27)

63.35
(±3.90)

64.05
(±1.69)

71.25
(±3.30)

67.46
(±4.46)

66.75
(±5.14)

68.47
(±0.37)

8-hidden 51.48
(±3.28)

52.20
(±3.37)

57.78
(±4.56)

59.08
(±2.64)

61.81
(±7.37)

62.10
(±5.48)

62.35
(±3.50)

62.38
(±2.73)

10-hidden 46.23
(±3.98)

51.90
(±3.13)

51.84
(±4.29)

50.19
(±4.42)

58.26
(±5.65)

59.43
(±3.16)

59.60
(±3.72)

57.38
(±3.11)

FedGCN 2-GCNConv 42.42
(±2.29)

42.07
(±3.71)

39.57
(±1.22)

40.12
(±2.54)

57.82
(±5.47)

53.65
(±2.46)

51.69
(±3.66)

49.04
(±3.01)

[7] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. 2020.
Simple and deep graph convolutional networks. In International Conference on
Machine Learning. PMLR, 1725–1735.

[8] Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. 2019. Hy-
pergraph neural networks. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 33. 3558–3565.

[9] Xingbo Fu, Binchi Zhang, Yushun Dong, Chen Chen, and Jundong Li. 2022. Feder-
ated graph machine learning: A survey of concepts, techniques, and applications.
ACM SIGKDD Explorations Newsletter 24, 2 (2022), 32–47.

[10] Xavier Glorot and Yoshua Bengio. 2010. Understanding the difficulty of training
deep feedforward neural networks. In Proceedings of the thirteenth international
conference on artificial intelligence and statistics. JMLR Workshop and Conference
Proceedings, 249–256.

[11] Kai Guo, Kaixiong Zhou, Xia Hu, Yu Li, Yi Chang, and Xin Wang. 2022. Orthogo-
nal graph neural networks. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 36. 3996–4004.

[12] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. Neural Information Processing Systems (2017), 1025–
1035.

[13] Chaoyang He, Keshav Balasubramanian, Emir Ceyani, Carl Yang, Han Xie, Lichao
Sun, Lifang He, Liangwei Yang, Philip S Yu, Yu Rong, et al. 2021. Fedgraphnn:
A federated learning system and benchmark for graph neural networks. arXiv
preprint arXiv:2104.07145 (2021).

[14] Dongxiao He, Chundong Liang, Huixin Liu, Mingxiang Wen, Pengfei Jiao, and
Zhiyong Feng. 2022. Blockmodeling-guided graph convolutional neural networks.
In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 4022–4029.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep
into rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision. 1026–1034.

[16] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebas-
tian Stich, and Ananda Theertha Suresh. 2020. Scaffold: Stochastic controlled
averaging for federated learning. In International conference on machine learning.
PMLR, 5132–5143.

[17] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. International Conference on Learning Representations
(2017).

[18] Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. 2018. Pre-
dict then propagate: Graph neural networks meet personalized pagerank. arXiv
preprint arXiv:1810.05997 (2018).

[19] Runze Lei, Pinghui Wang, Junzhou Zhao, Lin Lan, Jing Tao, Chao Deng, Junlan
Feng, Xidian Wang, and Xiaohong Guan. 2023. Federated Learning over Coupled
Graphs. IEEE Transactions on Parallel and Distributed Systems 34, 4 (2023), 1159–
1172.

[20] Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. 2020. Federated
learning: Challenges, methods, and future directions. IEEE signal processing
magazine 37, 3 (2020), 50–60.

[21] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar,
and Virginia Smith. 2020. Federated optimization in heterogeneous networks.
Proceedings of Machine learning and systems 2 (2020), 429–450.

[22] Rui Liu, Pengwei Xing, Zichao Deng, Anran Li, Cuntai Guan, and Han Yu. 2022.
Federated graph neural networks: Overview, techniques and challenges. arXiv
preprint arXiv:2202.07256 (2022).

[23] Songtao Lu, Yawen Zhang, and Yunlong Wang. 2020. Decentralized federated
learning for electronic health records. In 2020 54th Annual Conference on Infor-
mation Sciences and Systems (CISS). IEEE, 1–5.

[24] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2017. Communication-efficient learning of deep net-
works from decentralized data. In Artificial intelligence and statistics. PMLR,
1273–1282.

[25] Jaehoon Oh, Sangmook Kim, and Se-Young Yun. 2021. Fedbabu: Towards
enhanced representation for federated image classification. arXiv preprint
arXiv:2106.06042 (2021).

[26] Liang Peng, Nan Wang, Nicha Dvornek, Xiaofeng Zhu, and Xiaoxiao Li. 2022.
Fedni: Federated graph learning with network inpainting for population-based
disease prediction. IEEE Transactions on Medical Imaging (2022).

[27] Yue Tan, Yixin Liu, Guodong Long, Jing Jiang, Qinghua Lu, and Chengqi Zhang.
2023. Federated learning on non-iid graphs via structural knowledge sharing. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 37. 9953–9961.

[28] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. International Conference
on Learning Representations (2018).

[29] Binghui Wang, Ang Li, Meng Pang, Hai Li, and Yiran Chen. 2022. Graphfl: A
federated learning framework for semi-supervised node classification on graphs.
In 2022 IEEE International Conference on Data Mining (ICDM). IEEE, 498–507.

[30] XiaoWang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu.
2019. Heterogeneous graph attention network. In The world wide web conference.
2022–2032.

[31] Chuhan Wu, Fangzhao Wu, Yang Cao, Yongfeng Huang, and Xing Xie. 2021.
Fedgnn: Federated graph neural network for privacy-preserving recommendation.
arXiv preprint arXiv:2102.04925 (2021).

[32] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In International
conference on machine learning. PMLR, 6861–6871.

[33] Han Xie, Jing Ma, Li Xiong, and Carl Yang. 2021. Federated graph classification
over non-iid graphs. Advances in Neural Information Processing Systems 34 (2021),
18839–18852.

[34] Han Xie, Li Xiong, and Carl Yang. 2023. Federated node classification over graphs
with latent link-type heterogeneity. In Proceedings of the ACM Web Conference
2023. 556–566.

[35] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. Advances in
Neural Information Processing Systems 33 (2020), 5812–5823.

[36] Werner Zellinger, Thomas Grubinger, Edwin Lughofer, Thomas Natschläger, and
Susanne Saminger-Platz. 2017. Central moment discrepancy (cmd) for domain-
invariant representation learning. arXiv preprint arXiv:1702.08811 (2017).

[37] Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. 2023. Rethinking the
expressive power of gnns via graph biconnectivity. arXiv preprint arXiv:2301.09505
(2023).

[38] Ke Zhang, Carl Yang, Xiaoxiao Li, Lichao Sun, and Siu Ming Yiu. 2021. Sub-
graph federated learning with missing neighbor generation. Advances in Neural
Information Processing Systems 34 (2021), 6671–6682.

[39] Longfei Zheng, Jun Zhou, Chaochao Chen, Bingzhe Wu, Li Wang, and Benyu
Zhang. 2021. Asfgnn: Automated separated-federated graph neural network.
Peer-to-Peer Networking and Applications 14, 3 (2021), 1692–1704.

[40] Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai
Koutra. 2020. Beyond homophily in graph neural networks: Current limitations
and effective designs. Advances in Neural Information Processing Systems 33
(2020), 7793–7804.

95

	Abstract
	1 Introduction
	2 Related Works
	3 PRELIMINARIES
	4 Our Proposed Method: FedOMD
	4.1 Notations
	4.2 Motivations of Orthogonality
	4.3 Orthogonalized Node Representation Learning
	4.4 Center Moment Optimization
	4.5 Overall Optimization Goal
	4.6 Algorithm

	5 Experiments
	5.1 Settings
	5.2 Results on Node Classification
	5.3 Ablation Analysis
	5.4 Sensitivity Analysis

	6 Conclusions
	Acknowledgments
	References

